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The fluid phase behavior of charge-stabilized colloidal suspensions is explored by applying a variant of the
Gibbs ensemble Monte Carlo simulation method to a coarse-grained one-component model with implicit
microions and solvent. The simulations take as input linear-response approximations for the effective electro-
static interactions—a hard-sphere-Yukawa pair potential and a one-body volume energy. The conventional
Gibbs ensemble trial moves are supplemented by exchange of �implicit� salt between coexisting phases, with
acceptance probabilities influenced by the state dependence of the effective interactions. Compared with
large-scale simulations of the primitive model, with explicit microions, our computationally practical simula-
tions of the one-component model closely match the pressures and pair distribution functions at moderate
electrostatic couplings. For macroion valences and couplings within the linear-response regime, deionized
aqueous suspensions with monovalent microions exhibit separation into macroion-rich and macroion-poor fluid
phases below a critical salt concentration. The resulting pressures and phase diagrams are in excellent agree-
ment with predictions of a variational free energy theory based on the same model.
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I. INTRODUCTION

Charge-stabilized colloidal suspensions �1� containing
monovalent microions reportedly can display unusual ther-
modynamic behavior when strongly deionized. Puzzling ex-
perimental observations include liquid-vapor coexistence �2�,
stable voids �3–6�, contracted crystal lattices �6–8�, and
metastable crystallites �9�. Such phenomena reveal an ex-
traordinary cohesion between like-charged macroions that
appears inconsistent with the purely repulsive electrostatic
pair interactions predicted by the classic theory of Derjaguin,
Landau, Verwey, and Overbeek �DLVO� �10,11�. Failure of
the DLVO theory to account for the anomalous phase behav-
ior of deionized suspensions has prompted many theoretical
and simulation studies.

Predictions of a spinodal instability in deionized charged
colloids follow from classical density-functional �12–15�, ex-
tended Debye-Hückel �16–18�, and linear-response �19–23�
theories of a coarse-grained one-component model. The pre-
dicted phase separation is driven by the state dependence of
the effective electrostatic interactions, including a one-body
volume energy �24–26�. Such predictions have been chal-
lenged on the grounds that the underlying linearization ap-
proximations may fail to describe nonlinear microion screen-
ing �27–29� and neglect strong counterion association that
may renormalize the effective macroion charge �30–34�. The
debate is somewhat complicated, however, by the proximity
of the unstable parameter regime to the threshold for signifi-
cant nonlinearity and charge renormalization.

Some simulations of the primitive model �35,36�, with
explicit microions interacting via long-ranged Coulomb po-
tentials, exhibit clustering of macroions at strong electro-
static couplings. Such computationally intensive simulations
become increasingly demanding, however, upon approaching

the size and charge asymmetries required to directly test pre-
dictions, even when sophisticated cluster moves are included
�37�. Therefore, reconciling theories, simulations, and ex-
periments to clarify the phase behavior of deionized charged
colloids calls for novel simulation methods tailored to me-
soscale models.

The main purpose of the present work is to propose a
variant of the Gibbs ensemble Monte Carlo method suited to
modeling density-dependent effective electrostatic interac-
tions. As a demonstration, we apply the method to deionized
charged colloids to test predictions of phase instability. After
first defining the model system and one-component mapping
in Sec. II, we briefly summarize the linear-response theory of
effective interactions and a variational free energy theory in
Sec. III. The Monte Carlo algorithm is next outlined in Sec.
IV. Simulation results are presented in Sec. V, with diagnos-
tic details deferred to the Appendix. Comparisons with
theory and primitive model simulations confirm previous
predictions and illustrate the computational advantages and
limitations of the one-component model. Finally, Sec. VI
summarizes our conclusions.

II. MODEL

A. Primitive model

As the underlying microscopic model, we adopt the
primitive model of charged colloids �38�: macroions and mi-
croions dispersed in a continuum solvent of dielectric con-
stant � in a closed volume V. The macroions are modeled as
charged hard spheres, monodisperse in radius a and effective
valence Z �charge −Ze�, and the microions �counterions and
salt ions� as point charges of valence z. Here we assume
monovalent microions �z=1� dispersed in water at tempera-
ture T=293 K, corresponding to a Bjerrum length �B
�e2 / ��kBT�=0.72 nm. Assuming Nm macroions and Ns pairs
of dissociated salt ions, we have N+= �Z /z�Nm+Ns positive
and N−=Ns negative microions.
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B. Coarse-grained one-component model

Long-ranged Coulomb interactions and high charge asym-
metries render large-scale simulations of the primitive model
computationally challenging. The model can be further sim-
plified, however, by averaging over microion degrees of free-
dom to map the macroion-microion mixture onto a coarse-
grained one-component model governed by effective
electrostatic interactions �39�. The mapping acts on the par-
tition function,

Z = Š�exp�− �H���‹m, �1�

where H is the total Hamiltonian, ��1/kBT, and the angular
brackets denote traces over microion ��� and macroion �m�
degrees of freedom. The Hamiltonian naturally decomposes,
according to H=Hm+H�+Hm�, into a bare macroion Hamil-
tonian Hm, a microion Hamiltonian H�, and a macroion-
microion interaction energy Hm�. For a chemically closed
suspension, which exchanges no particles with its surround-
ings, a canonical trace over only microion coordinates yields
the canonical partition function

Z = �exp�− �Heff��m, �2�

where Heff=Hm+F� is the effective one-component Hamil-
tonian and

F� = − kBT ln �exp�− ��H� + Hm����� �3�

is the Helmholtz free energy of a microion gas in the midst
of fixed macroions. Equations �2� and �3� provide a formal
basis for approximating effective electrostatic interactions
and simulating the effective one-component model of
charged colloids.

III. THEORY

A. Linear-response theory of effective interactions

Statistical mechanical descriptions of effective electro-
static interactions, including density-functional �12–15�, ex-
tended Debye-Hückel �16–18�, and response �19–22� theo-
ries, typically invoke linearization and mean-field
approximations for the microion free energy F� �Eq. �3��.
Response theory describes the perturbation of the microion
densities by the “external” macroion electrostatic potential.
Taking as the unperturbed reference system a uniform gas of
microions in the free volume outside the macroion hard
cores, the microion free energy can be expressed as

F� = Fplasma + �
0

1

d��Hm��� − Eb, �4�

where Fplasma is the free energy of a uniform plasma of mi-
croions in a charge-neutralizing background of energy Eb,
the charging parameter � tunes the macroion charge �and
microion response� from zero to maximum, and � �� repre-
sents an average with respect to an ensemble of macroions
charged to a fraction � of their full charge. For weakly cor-
related microions, the plasma free energy has the ideal-gas
form,

�Fplasma = N+�ln�n+��
3 � − 1� + N−�ln�n−��

3 � − 1� , �5�

where n±=N± / �V�1−��� are the average microion number
densities, �= �4� /3�nma3 is the volume fraction of the mac-
roions with number density nm=Nm /V, and �� is the micro-
ion thermal wavelength.

The linear-response approximation expands the microion
number densities in functional Taylor series in powers of the
macroion external potential, truncates the expansions at lin-
ear order, and neglects microion correlations by assuming
mean-field response functions �19–22�. The resulting internal
potential energy

U = Evol�Nm,Ns,V,T� + Upair�	r
;Nm,Ns,V,T� �6�

separates into a one-body volume energy Evol, which is in-
dependent of macroion coordinates, and a pair potential en-
ergy Upair, which depends on the macroion coordinates 	r
.
The volume energy, originating from the microion entropy
and macroion-microion interaction energy, is given by

�Evol = �Fplasma − Nm�Z

z
�2�B

2

	

1 + 	a
− Nm

Z

2

n+ − n−

n�

, �7�

where 	=4��Bz2n� is the Debye screening constant �in-
verse screening length�, a function of the total microion den-
sity n�=n++n−. The pair potential energy

Upair =
1

2 �
i�j=1

Nm

veff��ri − r j�� �8�

is the sum of hard-sphere-repulsive-Yukawa �screened-
Coulomb� effective pair potentials,

veff�r� = �Z2e2

�
� exp�	a�

1 + 	a
�2exp�− 	r�

r
, r 
 2a ,

� , r � 2a .
� �9�

The effective pair potential, a product of microion screening
of the bare macroion-macroion Coulomb interactions, has
the long-range form of the DLVO potential �10,11�, but with
a density-dependent screening constant. The constraint of
electroneutrality ties average macroion and microion number
densities via Znm / �1−��=z�n+−n−�, rendering the effective
interactions dependent on the average densities of both mac-
roions and salt ion pairs, ns=Ns / �V�1−���. Equations
�5�–�9� summarize the effective interactions that we input to
theory and simulations of the one-component model.

B. Variational free energy theory

At constant particle numbers, volume, and temperature,
the Helmholtz free energy F is a minimum with respect to
variations in Nm, N±, V, and T at thermodynamic equilibrium.
The electroneutrality constraint requires that ion exchange
between phases occurs only in charge-neutral units, allowing
the free energy to be regarded as a function of the number of
salt ion pairs Ns, rather than of N+ and N− separately. Within
the one-component model, the free energy separates, accord-
ing to
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F�Nm,Ns,V,T� = Fid�Nm,V,T� + Fex�Nm,Ns,V,T�

+ Evol�Nm,Ns,V,T� , �10�

where Fid=NmkBT�ln�nm�3�−1� is the free energy of an ideal
�noninteracting� gas of macroions of thermal wavelength �,
and Fex is the excess free energy due to effective pair inter-
actions �Eq. �9��.

A variational approximation �12–14,23� based on first-
order thermodynamic perturbation theory with a hard-sphere
�HS� reference system �38� gives the excess free energy den-
sity as

fex�nm,ns� = min
�d�
� fHS�nm,ns;d� + 2�nm

2�
d

�

dr r2gHS�r,nm;d�

veff�r,nm,ns�� , �11�

where the effective HS diameter d is the variational param-
eter and fHS�nm ,ns ;d� and gHS�r ,nm ;d� are, respectively, the
excess free energy density and �radial� pair distribution func-
tion of the HS fluid, computed here from the near-exact
Carnahan-Starling and Verlet-Weis expressions �38�. Accord-
ing to the Gibbs-Bogoliubov inequality �38�, minimization of
fex with respect to d yields a least upper bound to the free
energy. From the variational approximation for the total free
energy �Eqs. �10� and �11��, the fluid branch of the phase
diagram can be computed by performing a common-tangent
construction on the curve of free energy density f =F /V vs
macroion number density nm at fixed salt chemical potential,
imposing equality of the pressure p=nm��f /�nm�Ns/Nm

− f and
of the macroion and salt chemical potentials �m
= ��f /�nm�ns

and �s= ��f /�ns�nm
in coexisting phases.

IV. GIBBS ENSEMBLE MONTE CARLO SIMULATIONS

The effective interactions described above, which were
used in previous variational theory calculations for the one-
component model �23�, are here input into simulations of the
same model to test the accuracy of the variational approxi-
mation and its predictions for thermodynamic behavior. The
Gibbs ensemble Monte Carlo �GEMC� method �40–44� pro-
vides an efficient means of simulating two-phase fluid coex-
istence by obviating the need to model interfaces. Each
phase is represented by its own simulation box, with fluctu-
ating macroion numbers Nmi and volumes Vi �i=1,2�. In the
constant-NVT implementation, the total macroion number
Nm=Nm1+Nm2, total volume V=V1+V2, and temperature T
all remain fixed. We further fix the total number of �implicit�
salt ion pairs, Ns=Ns1+Ns2, while performing virtual ex-
changes between boxes. Although the GEMC method has
been previously applied to fluids with density-dependent pair
potentials �45�, it has not yet, to our knowledge, been
adapted to charged systems whose effective interactions in-
clude both a pair potential and volume energy.

The conventional GEMC algorithm �40–44� involves
three types of random trial move: �1� displacements of par-
ticles �macroions� within each box to ensure thermal equilib-
rium of each phase; �2� volume exchanges between the two

boxes to ensure mechanical equilibrium, characterized by
equality of pressures; and �3� macroion transfers between the
two boxes to ensure chemical equilibrium with respect to
macroion exchange, characterized by equality of macroion
chemical potentials. The acceptance probability Pmove for
any trial move from an old �o� to a new �n� state can be
derived from the Metropolis condition �46–48�,

Pmove = min�P�n�
P�o�

,1� , �12�

where the Gibbs ensemble probability density �47� is given
by

P =
1

Nm1!Nm2!
� V1

�3�Nm1� V2

�3�Nm2

exp�− �U�	s
;nm,ns��

�13�

and 	s
 denotes the macroion coordinates scaled by their re-
spective box lengths. Although the salt ion coordinates do
not explicitly appear in Eq. �13�, the potential energy U �Eq.
�6�� implicitly depends on the average salt �and macroion�
densities in the two boxes.

From Eqs. �12� and �13�, trial displacements are accepted
with probability

Pdisp = min	exp�− ��U�,1
 , �14�

where �U=U�n�−U�o� is the change in total potential en-
ergy between the new and old states. Note that, for internal
displacements, which do not affect the volume energy, �U
=�Upair �Eq. �8��. For all other moves, however, the change
in total potential energy also includes a change in volume
energy: �U=�Evol+�Upair.

A trial exchange of volume �V from box 1 to box 2 �V1
→V1−�V, V2→V2+�V� is achieved by uniformly rescaling
all macroion coordinates. In practice, it proves more efficient
to vary ln�V1 /V2�, with an acceptance probability �47�

Pvol = min��V1 − �V

V1
�Nm1+1�V2 + �V

V2
�Nm2+1

exp�− ��U�,1� . �15�

Transfer of a macroion from box 1 to box 2 �Nm1→Nm1−1,
Nm2→Nm2+1� is accepted with probability �42�

Ptrans = min� Nm1

Nm2 + 1

V2

V1
exp�− ��U�,1� . �16�

Note that �U in Eqs. �15� and �16� represents the change in
total potential energy of the two boxes combined, since ex-
changes of volume or macroions alter the average macroion
density �nmi=Nmi /Vi�, and thus the volume energy �Eq. �7��
and pair potential �Eq. �9��, in each box.

In addition to the conventional GEMC moves, we per-
form trial transfers of salt between the two boxes, required to
ensure chemical equilibrium with respect to salt exchange
between coexisting phases, characterized by equality of salt
chemical potentials. Since the salt is modeled here only im-
plicitly, virtual transfers involve simply changing the average
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salt density of each box, with acceptance probability

Psalt = min	exp�− ��U�,1
 , �17�

where �U is the change in total potential energy of both
boxes. We stress that exchanges of average salt density affect
both the pair potential and the volume energy in each box.
The absence of combinatorial and phase-space prefactors in
Eq. �17� follows from implicit modeling of salt ions. In prac-
tice, a transfer of �Ns salt ion pairs from box 1 to box 2
�Ns1→Ns1−�Ns, Ns2→Ns2+�Ns� is realized by changing
the respective salt densities accordingly and adjusting
�Ns ��Ns1 ,Ns2� to achieve a reasonable acceptance rate.

Within the Gibbs ensemble, we simulated two cubic
boxes subject to periodic boundary conditions, each box con-
taining only macroions, but evolving according to effective
interactions �Eqs. �7� and �9�� that implicitly depend on the
microion densities. To exclude interactions of a particle with
its own periodic images, and avoid needless computation,
pair interactions between macroions were cut off at a dis-
tance of rc=min	20/	 ,L /2
, i.e., the shorter of 20 screening
lengths or half the respective box length L. The effective
interactions were updated whenever the average macroion or
salt density changed.

The simulations started from initial configurations of ran-
domly distributed macroions, with equal particle numbers,
volumes, and salt concentrations in each box. The four types
of trial move were executed in random sequence at pre-
scribed frequencies. Defining a cycle as an average of Nm
trial displacements �i.e., one per macroion�, the other moves
were attempted with relative frequencies per cycle of Nm /2
for volume exchanges, Nm /10 for macroion transfers, and
Nm /10 for salt exchanges. For internal displacements, mac-
roions were selected at random and moved with tolerances
adjusted to yield an acceptance rate of about 50%. For vol-
ume and salt exchanges, acceptance rates of about 10% were
achieved by adjusting the tolerances, the resulting salt toler-
ance being �Ns /Ns�10−3. After equilibrating for 104 cycles,
we accumulated statistics for average densities, pressures,
and chemical potentials over the next 104 cycles �5106 dis-
placements for Nm=500�.

V. RESULTS AND DISCUSSION

A. Tests of one-component model and variational theory

To investigate thermodynamic phase behavior of charged
colloids, we input effective electrostatic interactions �Sec.
III A� to both variational theory calculations �Sec. III B� and
Gibbs ensemble Monte Carlo simulations �Sec. IV� of the
coarse-grained one-component model. The validity of the
one-component model is first tested by comparing structural
and thermodynamic properties with available data from
simulations of the primitive model, which include explicit
point counterions interacting via bare Coulomb potentials.

From extensive Monte Carlo �MC� simulations, Linse
�35� has generated a wealth of data for the �salt-free� primi-
tive model over ranges of macroion valence, volume frac-
tion, and electrostatic coupling parameter �=�B /a. For di-
rect comparison, we performed simulations of the effective

one-component model for identical parameters—fixing the
effective macroion valence �Z=40�, counterion valence �z
=1�, and Bjerrum length ��B=0.72 nm�, and varying the
macroion radius a—and computed the macroion-macroion
pair distribution function g�r� and pressure p, as described in
the Appendix. For this purpose, we performed standard
constant-NVT �one-box� simulations, the volume energy then
having no effect on the pair structure. To obtain accurate g�r�
results, a system size of Nm=600 sufficed to render finite-
size effects negligible. To maintain consistently high accu-
racy in the pressure, we increased the particle number to
ensure a cutoff radius of at least 20 screening lengths for
each combination of � and �—ranging up to Nm=8000 for
�=0.02, �=0.0445.

Figures 1 and 2 compare numerical results of our simula-
tions of the one-component model with Linse’s simulations
of the primitive model �35�. At relatively low electrostatic
couplings ���0.1779, Z�B /a�7�, our results for the pair
distribution function and pressure closely match the corre-
sponding primitive model data �Fig. 5�a� and Table III of
Ref. �35�, after minor corrections �49��. It should be noted
that good agreement at higher volume fractions is achieved
only when the excluded-volume factor of 1 / �1−�� is consis-
tently included in the effective interactions. These compari-
sons demonstrate the accuracy of the one-component model
with linearized effective interactions for moderately coupled
systems. Figure 2 also presents predictions for the pressure
from our variational theory calculations. The near-perfect
alignment of theory and simulations of the one-component
model validates the variational approximation over the pa-
rameter ranges studied.

At higher electrostatic couplings �Z�B /a�7�, typical of
highly charged latex particles and ionic surfactant micelles,
significant deviations between the one-component and primi-
tive models abruptly emerge ��=0.3558 in Figs. 1 and 2�.
The discrepancies in this relatively strong-coupling regime
can be traced to renormalization of the effective macroion

5 10 15

r/a

0

1

2

3

g(
r)

OCM

PM

FIG. 1. Macroion-macroion pair distribution function g�r� vs
radial distance r �units of macroion radius a� of salt-free suspen-
sions computed from Monte Carlo simulations of the one-
component model �OCM� with implicit counterions �solid curves�
and the primitive model �PM� �35� with explicit counterions
�dashed curves� for macroion valence Z=40, volume fraction �
=0.01, and electrostatic coupling parameters �=�B /a=0.0222,
0.0445, 0.0889, 0.1779, 0.3558 �bottom to top�. For clarity, curves
are vertically offset in steps of 0.5.
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charge through strong association of counterions, a nonlinear
effect neglected in the present version of the model. Prelimi-
nary investigations �50� indicate, however, that the devia-
tions can be substantially reduced by consistently building
into the one-component model a renormalized effective
charge. These results establish a threshold of Z�B /a�7 for
significant charge renormalization within linear-response
theory.

To test the variational free energy theory at higher charge
asymmetries and nonzero salt concentrations, we compare
predictions for the osmotic pressure �equation of state� with
results from our GEMC simulations. The osmotic pressure
�= p−2nrkBT is here defined as the total pressure of the
suspension less that of a �virtual� ideal-gas salt reservoir of
ion pair density nr at the same salt chemical potential: �s
=kBT ln�2nr��

3 �. Figure 3 shows sample results for the equa-
tion of state at fixed salt chemical potential or, equivalently,
salt fugacity zs=exp���s /2�, from simulations at the salt
concentrations predicted by theory for each volume fraction.
Since theory and simulation assume identical effective inter-
actions, the comparisons directly probe the excess free en-
ergy approximation �Eq. �11�� and corresponding pair poten-
tial contribution to the total pressure �inset to Fig. 3�. The
predictions are in excellent agreement with simulation over a
wide range of volume fractions, further validating the varia-
tional approximation and providing a consistency check on
our calculations. As an independent check, our methods ac-
curately reproduce pressures computed from MC simulations
of the hard-sphere-repulsive-Yukawa pair potential fluid
�51�.

The appearance in Fig. 3 of a van der Waals loop in the
pressure signals a spinodal instability and separation into
macroion-rich �liquid� and macroion-poor �vapor� phases.
We stress, however, that currently available data from primi-
tive model simulations can test the effective one-component
model and linearized effective interactions only for salt-free
suspensions at relatively low charge asymmetries, where in-

stabilities with respect to phase separation have not been
predicted. Furthermore, the macroion aggregation observed
in Ref. �35� in the strong-coupling regime is likely driven by
microion correlations, which are neglected in the mean-field
effective interactions assumed here. While further tests of the
one-component model are needed, the close agreement for
parameters accessible to primitive model simulations moti-
vates proceeding to consider phase behavior.

B. Phase behavior

To systematically map out the fluid binodal, we performed
a series of GEMC simulations over ranges of volume frac-
tion and salt concentration for selected macroion radii and
valences: �a=10 nm, Z=150� and �a=50 nm, Z=500�. Ini-
tially uniform systems of Nm=500 particles �two-box total�,
in thermodynamic states �� ,cs� within the predicted unstable
region �23�, spontaneously separated into two phases, each
phase occupying one of the boxes, which differed in average
macroion and salt densities. In contrast, systems at state
points outside of the unstable region remained uniform. A
visual impression of the phase separation is provided by the
simulation snapshot in Fig. 4.

To identify the structure of the coexisting phases, we per-
formed constant-NVT �one-box� simulations, at identical
state points, for particle numbers commensurate with likely
crystal structures: fcc �Nm=500� and bcc �Nm=432�. Initial-
izing the particles on the sites of the respective lattice, we
computed the equilibrium pair distribution function and ob-
served typical fluidlike structure, indicating melting of the
initial crystal. Upon increasing the volume fraction, we ob-
served, at state points well outside the fluid binodal, an
abrupt sharpening of the peaks of g�r�, reflecting crystalliza-
tion. These observations are consistent with a simple hard-
sphere freezing criterion ��d /2a�3�0.49, which approxi-
mates the macroions as hard spheres of effective diameter d
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FIG. 2. Reduced pressure �p /ntot vs macroion volume fraction
�, where ntot= �Z+1�nm, for salt-free suspensions computed from
Monte Carlo simulations of the effective one-component model
with implicit counterions �solid symbols� and the primitive model
�35� with explicit counterions �open symbols� for macroion valence
Z=40 and several electrostatic coupling parameters �=�B /a. Simu-
lation error bars are smaller than symbol sizes. Also shown are
corresponding predictions of variational theory �curves�. From top
to bottom, �=0.0222, 0.0445, 0.0889, 0.1779, 0.3558.
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FIG. 3. Reduced osmotic pressure ��a3 vs volume fraction �
computed from Monte Carlo simulations and variational theory �23�
of the one-component model for Bjerrum length �B=0.72 nm, mac-
roion radius a=50 nm, valence Z=500, and salt fugacities zs=100
and 200 �M. Changes of curvature reflect phase instability. Inset:
Pair potential contribution to total pressure. Simulation error bars
are smaller than symbol sizes.
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�from Eq. �11�� and locates the coexistence densities within
the fluid regime.

The resulting phase diagrams are presented in Fig. 5,
alongside predictions of variational theory �23�, where tie
lines joining corresponding points on the macroion-rich and
macroion-poor binodal branches parallel those predicted by

theory. Each pair of points on the binodal was produced by
averaging over ten independent runs, which differed only in
the random number seed used for trial moves. Reported error
bars represent statistical uncertainties of one standard devia-
tion, computed from fluctuations in average densities among
the ten runs. Resolution near the critical point is blurred by
density fluctuations and phase switching between boxes—a
known limitation of the Gibbs ensemble method �47�. For
simplicity, we discarded runs in which the phases switched
boxes, a rare occurrence away from the critical point. Con-
sidering the sensitivity of the coexistence analysis to slight
deviations in free energy, the quantitative agreement between
theory and simulation attests to the accuracy of the varia-
tional approximation.

Diagnostic variables were monitored during the simula-
tions and evolved as typified by Fig. 6, which tracks the
volume fractions, salt concentrations, pressures, and chemi-
cal potentials in each box vs number of MC cycles for one
sample run. Bifurcation of volume fractions and salt concen-
trations in the two boxes �Fig. 6�a�� signals phase separation,
while convergence of pressures and chemical potentials
�Figs. 6�b� and 6�c�� confirms equilibration. Several runs for
larger systems �up to 1000 macroions� were performed to
establish the insignificance of finite-size effects. Compared
with large-scale simulations of the primitive model, our
simulations require relatively modest computing resources,
each run typically consuming 50–90 CPU hours on a single
PC �Intel Xeon-HT processor�.

It should be emphasized that the observed phase separa-
tion, although perhaps surprising in the face of purely repul-
sive pair interactions, is driven by the state dependence of
the volume energy in the one-component model of deionized
suspensions. It is also important to note that the macroion
valences and electrostatic couplings represented in Fig. 5
were selected to lie just within the unstable fluid regime and
correspond to �=0.072 and 0.014 �Z�B /a=7 and 11� in Figs.
5�a� and 5�b�, respectively �cf. Z�B /a�1–14 in Ref. �35��.
In each case, a small increase in macroion radius or decrease
in valence stabilizes the system. These parameters approach
the threshold for charge renormalization estimated from our
direct comparisons with primitive model simulations �Figs. 1
and 2�, albeit for lower valences. Whether the predicted
phase instability corresponds to a real phenomenon or is
merely an artifact of the linearization approximation
�27–29�, or the assumption of fixed macroion valence
�30–34�, remains unclear. Preliminary explorations �50�,
based on a simple model of effective macroion valence, sug-
gest that the instability survives incorporation of charge
renormalization in the one-component model. Further studies
are required, however, to resolve this important issue.

VI. CONCLUSIONS

In summary, we have developed a variant of the Gibbs
ensemble Monte Carlo method to simulate a one-component
model of charged colloids governed by density-dependent
effective interactions. The effective interactions �pair poten-
tial and one-body volume energy� are input from linear-
response theory, assuming a mean-field approximation for

FIG. 4. �Color online� Snapshot from Gibbs ensemble Monte
Carlo simulation, showing the two boxes after separation into
macroion-rich and macroion-poor phases. Spheres depict macroions
in the effective one-component model.
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FIG. 5. Phase diagrams of aqueous charged colloids, showing
fluid binodal computed from Gibbs ensemble Monte Carlo simula-
tions �squares� and variational theory �23� �solid curves� for the
effective one-component model at various combinations of macro-
ion radius a and valence Z. Tie lines join corresponding points on
the colloid-rich and colloid-poor branches of the binodal. Also
shown are predictions of variational theory for the critical point
�circles� and spinodal �dashed curves�.
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microion structure. The simulation algorithm includes trial
exchanges of implicit salt between the two simulation boxes
and incorporates the volume energy into the acceptance
probabilities for trial moves that change the average macro-
ion or salt density.

Comparisons with simulations of the two-component
�salt-free� primitive model �35� demonstrate the validity of
the one-component model over a wide parameter range,
physically relevant to charged latex particles and micelles.
Results for the macroion-macroion pair distribution function
and pressure are in close agreement with corresponding
primitive model results for moderate electrostatic couplings.
Deviations at stronger couplings likely originate from non-
linear screening effects neglected in the present model. Our
simulations also confirm the accuracy of a variational free
energy approximation �12–14,23�. Further comparisons
would help to more sharply define the limitations of the one-
component model.

While the cost of primitive model simulations grows with
increasing charge asymmetry, concentration, and electro-
static coupling, the computational effort required to simulate
the one-component model is relatively modest and actually
diminishes with increasing macroion valence and concentra-
tion, as decreasing the screening length shortens the range of
effective pair interactions. The one-component model thus
offers insight into bulk phase behavior in parameter regimes
that may be computationally prohibitive for more explicit
models.

We have applied our simulation method to test predictions
of variational theory �23� for the phase behavior of aqueous
suspensions of charged macroions with weakly correlated
�monovalent� microions at low salt concentrations. The re-
sulting phase diagrams exhibit coexistence of macroion-rich
and macroion-poor fluid phases, in excellent agreement with
previous predictions and qualitatively consistent with ob-
served thermodynamic anomalies. The phase instability pre-
dicted by theory, and now confirmed by simulations of the
same model, occurs in a parameter regime that appears to
border the threshold for saturation of the effective macroion
charge. Future work will address this open issue by incorpo-
rating charge renormalization into the one-component model
�50�. Finally, our simulation algorithm can be extended to
investigate other phase transitions, e.g., crystallization, and
adapted to model other soft materials, such as polyelectrolyte
and ionic micellar solutions.
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APPENDIX: DIAGNOSTIC CALCULATIONS

1. Pressure

A diagnostic for mechanical equilibrium in the Gibbs en-
semble is equality of pressures in the two boxes. The total
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FIG. 6. Evolution of diagnostic properties during a sample
Gibbs ensemble Monte Carlo run for macroion radius a=50 nm,
valence Z=500, total volume fraction �=0.025, and total salt con-
centration cs=200 �M. Solid and dashed curves represent the two
boxes. �a� Volume fractions and �inset� salt concentrations; �b� total
pressure; �c� macroion and �inset� salt chemical potentials, shifted
to zero average. Instantaneous values are plotted during equilibra-
tion �first 104 cycles� and cumulative values thereafter.
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pressure naturally separates into three distinct contributions:

p = pid + ppair + pvol, �A1�

where pid= �nm�kBT is the ideal-gas pressure of the macro-
ions, ppair results from effective pair interactions between
macroions, pvol=−���Evol /�V�Nm/Ns

� is the contribution from
the density-dependent volume energy, and angular brackets
denote an ensemble average over configurations in the Gibbs
ensemble. The pair pressure is calculated on the fly within
the simulations using the virial expression for a density-
dependent pair potential �52�:

ppair = �Vint

3V
� −�� �Upair

�V
�

Nm/Ns

� + ptail, �A2�

where Vint is the internal virial, the volume derivative term
accounts for the density dependence of the effective pair po-
tential, and ptail corrects for cutting off the long-range tail of
the pair potential. The internal virial is given by

Vint = �
i=1

Nm

ri · fi = �
i�j=1

Nm

�1 + 	rij�veff�rij� , �A3�

where fi=−�� j�iveff�rij� is the effective force exerted on
macroion i, at position ri, by all neighboring macroions j, at
relative distances rij, within the cutoff radius rc. The second
term on the right side of Eq. �A2� is computed via

� �Upair

�V
�

Ns/Nm

= −
nm

2

2Nm
�

i�j=1

Nm � �veff�rij�
�nm

�
Ns/Nm

�A4�

with

� �veff�r�
�nm

�
Ns/Nm

= � 	2a2

1 + 	a
−

	r

2
� veff�r�

nm�1 − ��
. �A5�

The tail pressure is approximated by

ptail = −
2�

3 �nm
2�

rc

�

dr r3veff� �r��
=

2�

3
�nm

2 �	2rc
2 + 3	rc + 3

	2 �rcveff�rc�� , �A6�

the approximation being the neglect of pair correlations for
r�rc. Finally, the volume pressure is given by

�pvol = � nm

1 − �
�Z + 2

Ns

Nm
−

Z2	�B

4�1 + 	a�2�� . �A7�

2. Chemical potentials

To diagnose chemical equilibrium between coexisting
phases, we computed the chemical potentials of macroions
and salt by adapting Widom’s test particle insertion method
�53� to the Gibbs ensemble, following Ref. �47�. In contrast
to the original method, the inserted ions are not treated as
ghost particles in the GEMC method, but rather remain
within the box into which they are successfully transferred.
The macroion chemical potential—the change in Helmholtz

free energy upon adding a macroion—can be expressed as

�m = − kBT ln�ZG�Nm + 1,Ns,V,T�
ZG�Nm,Ns,V,T� � , �A8�

where the Gibbs ensemble partition function is given by

ZG =
1

�3NmV
�

Nm1=0

Nm 1

Nm1!�Nm − Nm1�!

�
0

V

dV1V1
Nm1�V − V1�Nm−Nm1

� dsNm exp�− �U�	s
;nm,ns�� . �A9�

The macroion chemical potential of box 1 is thus computed
from �47�

�m1 = − kBT ln� V1/�3

�Nm1 + 1�
exp�− ��U1

+m�� , �A10�

where �U1
+m=U�Nm1+1�−U�Nm1� is the change in total po-

tential energy �volume energy plus pair energy� of box 1
upon insertion of a macroion. In practice, the large change in
volume energy �Evol resulting from a macroion insertion ne-
cessitates evaluating Eq. �A10� by adding to and subtracting
from the argument of the exponential a constant c���Evol�:

�m1 = − kBT ln� V1/�3

�Nm1 + 1�
exp�− ���U1

+m − c��� + c .

�A11�

The salt chemical potential—the change in Helmholtz
free energy upon insertion of a salt ion pair—can be approxi-
mated by

�s = −
kBT

�Ns
ln�ZG�Nm,Ns + �Ns,V,T�

ZG�Nm,Ns,V,T� � , �A12�

assuming that the number of exchanged salt ion pairs �Ns is
much less than the total number of salt ion pairs ��Ns

�Ns�. The salt chemical potential of box 1 is thus computed
from

�s1 = −
kBT

�Ns
ln�exp�− ���U1

+s − c��� +
c

�Ns
, �A13�

where �U1
+s=U�Ns1+�Ns�−U�Ns1� is the change in total po-

tential energy of box 1 upon insertion of �Ns salt ion pairs.
The absence of combinatorial and phase space factors in Eq.
�A13� follows from modeling the microions only implicitly.
Note also that the chemical potentials are defined only to
within arbitrary constants. In the dilute colloid limit �Nm

→0�, the salt chemical potential tends to that of an ideal gas
of salt ions,

�s
�0� = 2kBT�ln�ns��

3 �� , �A14�
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and the macroion chemical potential reduces to

�m
�0� = kBT�− ln� V

�3� + Z ln�ns��
3 � − �Z

z
�2 	�B

2�1 + 	a�

+
8�

3
nsa

3� , �A15�

where the terms on the right side are derived �left to right�
from the macroion entropy, microion entropy, macroion-
counterion interaction, and macroion excluded volume.
These analytical results �Eqs. �A14� and �A15�� provide a
check on the numerical results in the limit in which one box
becomes depleted of macroions.

3. Pair distribution function

The structure of the suspension is characterized by the
pair distribution functions �38�. The macroion-macroion pair
distribution function g�r�—the only one accessible in the
one-component model—is defined such that 4�r2g�r�dr
equals the average number of macroions in a spherical shell
of radius r and thickness dr centered on a macroion. For a
given configuration, each particle is regarded, in turn, as the
central particle. Neighboring particles are then assigned, ac-
cording to their radial distance r from the central particle, to
concentric spherical shells �bins� of thickness �r=0.1a. Af-
ter equilibration, g�r� is computed, in the range 2a�r
�L /2, by accumulating the numbers of particles in radial
bins and averaging over all configurations. The resulting dis-
tributions are finally smoothed by averaging each bin with its
immediate neighboring bins.
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